1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
//! Generic data structure serialization framework. //! //! The two most important traits in this module are `Serialize` and //! `Serializer`. //! //! - **A type that implements `Serialize` is a data structure** that can be //! serialized to any data format supported by Serde, and conversely //! - **A type that implements `Serializer` is a data format** that can //! serialize any data structure supported by Serde. //! //! # The Serialize trait //! //! Serde provides `Serialize` implementations for many Rust primitive and //! standard library types. The complete list is below. All of these can be //! serialized using Serde out of the box. //! //! Additionally, Serde provides a procedural macro called `serde_derive` to //! automatically generate `Serialize` implementations for structs and enums in //! your program. See the [codegen section of the manual][codegen] for how to //! use this. //! //! In rare cases it may be necessary to implement `Serialize` manually for some //! type in your program. See the [Implementing `Serialize`][impl-serialize] //! section of the manual for more about this. //! //! Third-party crates may provide `Serialize` implementations for types that //! they expose. For example the `linked-hash-map` crate provides a //! `LinkedHashMap<K, V>` type that is serializable by Serde because the crate //! provides an implementation of `Serialize` for it. //! //! # The Serializer trait //! //! `Serializer` implementations are provided by third-party crates, for example //! [`serde_json`][serde_json], [`serde_yaml`][serde_yaml] and //! [`bincode`][bincode]. //! //! A partial list of well-maintained formats is given on the [Serde //! website][data-formats]. //! //! # Implementations of Serialize provided by Serde //! //! - **Primitive types**: //! - bool //! - isize, i8, i16, i32, i64 //! - usize, u8, u16, u32, u64 //! - f32, f64 //! - char //! - str //! - &T and &mut T //! - **Compound types**: //! - [T] //! - [T; 0] through [T; 32] //! - tuples up to size 16 //! - **Common standard library types**: //! - String //! - Option\<T\> //! - Result\<T, E\> //! - PhantomData\<T\> //! - **Wrapper types**: //! - Box\<T\> //! - Rc\<T\> //! - Arc\<T\> //! - Cow\<'a, T\> //! - **Collection types**: //! - BTreeMap\<K, V\> //! - BTreeSet\<T\> //! - BinaryHeap\<T\> //! - HashMap\<K, V, H\> //! - HashSet\<T, H\> //! - LinkedList\<T\> //! - VecDeque\<T\> //! - Vec\<T\> //! - EnumSet\<T\> (unstable) //! - Range\<T\> (unstable) //! - RangeInclusive\<T\> (unstable) //! - **Miscellaneous standard library types**: //! - Duration //! - Path //! - PathBuf //! - NonZero\<T\> (unstable) //! - **Net types**: //! - IpAddr //! - Ipv4Addr //! - Ipv6Addr //! - SocketAddr //! - SocketAddrV4 //! - SocketAddrV6 //! //! [codegen]: https://serde.rs/codegen.html //! [impl-serialize]: https://serde.rs/impl-serialize.html //! [serde_json]: https://github.com/serde-rs/json //! [serde_yaml]: https://github.com/dtolnay/serde-yaml //! [bincode]: https://github.com/TyOverby/bincode //! [data-formats]: https://serde.rs/#data-formats #[cfg(feature = "std")] use std::error; #[cfg(not(feature = "std"))] use error; #[cfg(feature = "unstable")] use core::cell::RefCell; use core::fmt::Display; mod impls; mod impossible; // Helpers used by generated code. Not public API. #[doc(hidden)] pub mod private; pub use self::impossible::Impossible; /////////////////////////////////////////////////////////////////////////////// /// Trait used by `Serialize` implementations to generically construct errors /// belonging to the `Serializer` against which they are currently running. pub trait Error: Sized + error::Error { /// Raised when a `Serialize` implementation encounters a general error /// while serializing a type. /// /// The message should not be capitalized and should not end with a period. /// /// For example, a filesystem `Path` may refuse to serialize itself if it /// contains invalid UTF-8 data. /// /// ```rust /// # use serde::ser::{Serialize, Serializer, Error}; /// # struct Path; /// # impl Path { fn to_str(&self) -> Option<&str> { unimplemented!() } } /// impl Serialize for Path { /// fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> /// where S: Serializer /// { /// match self.to_str() { /// Some(s) => s.serialize(serializer), /// None => Err(Error::custom("path contains invalid UTF-8 characters")), /// } /// } /// } /// ``` fn custom<T: Display>(msg: T) -> Self; } /////////////////////////////////////////////////////////////////////////////// /// A **data structure** that can be serialized into any data format supported /// by Serde. /// /// Serde provides `Serialize` implementations for many Rust primitive and /// standard library types. The complete list is [here][ser]. All of these can /// be serialized using Serde out of the box. /// /// Additionally, Serde provides a procedural macro called `serde_derive` to /// automatically generate `Serialize` implementations for structs and enums in /// your program. See the [codegen section of the manual][codegen] for how to /// use this. /// /// In rare cases it may be necessary to implement `Serialize` manually for some /// type in your program. See the [Implementing `Serialize`][impl-serialize] /// section of the manual for more about this. /// /// Third-party crates may provide `Serialize` implementations for types that /// they expose. For example the `linked-hash-map` crate provides a /// `LinkedHashMap<K, V>` type that is serializable by Serde because the crate /// provides an implementation of `Serialize` for it. /// /// [ser]: https://docs.serde.rs/serde/ser/index.html /// [codegen]: https://serde.rs/codegen.html /// [impl-serialize]: https://serde.rs/impl-serialize.html pub trait Serialize { /// Serialize this value into the given Serde serializer. /// /// See the [Implementing `Serialize`][impl-serialize] section of the manual /// for more information about how to implement this method. /// /// [impl-serialize]: https://serde.rs/impl-serialize.html fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer; } /////////////////////////////////////////////////////////////////////////////// /// A **data format** that can serialize any data structure supported by Serde. /// /// The role of this trait is to define the serialization half of the Serde data /// model, which is a way to categorize every Rust data structure into one of 28 /// possible types. Each method of the `Serializer` trait corresponds to one of /// the types of the data model. /// /// Implementations of `Serialize` map themselves into this data model by /// invoking exactly one of the `Serializer` methods. /// /// The types that make up the Serde data model are: /// /// - 12 primitive types: /// - bool /// - i8, i16, i32, i64 /// - u8, u16, u32, u64 /// - f32, f64 /// - char /// - string /// - byte array - [u8] /// - option /// - either none or some value /// - unit /// - unit is the type of () in Rust /// - unit_struct /// - for example `struct Unit` or `PhantomData<T>` /// - unit_variant /// - the `E::A` and `E::B` in `enum E { A, B }` /// - newtype_struct /// - for example `struct Millimeters(u8)` /// - newtype_variant /// - the `E::N` in `enum E { N(u8) }` /// - seq /// - a dynamically sized sequence of values, for example `Vec<T>` or /// `HashSet<T>` /// - seq_fixed_size /// - a statically sized sequence of values for which the size will be known /// at deserialization time without looking at the serialized data, for /// example `[u64; 10]` /// - tuple /// - for example `(u8,)` or `(String, u64, Vec<T>)` /// - tuple_struct /// - for example `struct Rgb(u8, u8, u8)` /// - tuple_variant /// - the `E::T` in `enum E { T(u8, u8) }` /// - map /// - for example `BTreeMap<K, V>` /// - struct /// - a key-value pairing in which the keys will be known at deserialization /// time without looking at the serialized data, for example `struct S { r: /// u8, g: u8, b: u8 }` /// - struct_variant /// - the `E::S` in `enum E { S { r: u8, g: u8, b: u8 } }` /// /// Many Serde serializers produce text or binary data as output, for example /// JSON or Bincode. This is not a requirement of the `Serializer` trait, and /// there are serializers that do not produce text or binary output. One example /// is the `serde_json::value::Serializer` (distinct from the main `serde_json` /// serializer) that produces a `serde_json::Value` data structure in memory as /// output. pub trait Serializer { /// The output type produced by this `Serializer` during successful /// serialization. Most serializers that produce text or binary output /// should set `Ok = ()` and serialize into an `io::Write` or buffer /// contained within the `Serializer` instance. Serializers that build /// in-memory data structures may be simplified by using `Ok` to propagate /// the data structure around. type Ok; /// The error type when some error occurs during serialization. type Error: Error; /// Type returned from `serialize_seq` and `serialize_seq_fixed_size` for /// serializing the content of the sequence. type SerializeSeq: SerializeSeq<Ok=Self::Ok, Error=Self::Error>; /// Type returned from `serialize_tuple` for serializing the content of the /// tuple. type SerializeTuple: SerializeTuple<Ok=Self::Ok, Error=Self::Error>; /// Type returned from `serialize_tuple_struct` for serializing the content /// of the tuple struct. type SerializeTupleStruct: SerializeTupleStruct<Ok=Self::Ok, Error=Self::Error>; /// Type returned from `serialize_tuple_variant` for serializing the content /// of the tuple variant. type SerializeTupleVariant: SerializeTupleVariant<Ok=Self::Ok, Error=Self::Error>; /// Type returned from `serialize_map` for serializing the content of the /// map. type SerializeMap: SerializeMap<Ok=Self::Ok, Error=Self::Error>; /// Type returned from `serialize_struct` for serializing the content of the /// struct. type SerializeStruct: SerializeStruct<Ok=Self::Ok, Error=Self::Error>; /// Type returned from `serialize_struct_variant` for serializing the /// content of the struct variant. type SerializeStructVariant: SerializeStructVariant<Ok=Self::Ok, Error=Self::Error>; /// Serialize a `bool` value. fn serialize_bool(self, v: bool) -> Result<Self::Ok, Self::Error>; /// Serialize an `i8` value. /// /// If the format does not differentiate between `i8` and `i64`, a /// reasonable implementation would be to cast the value to `i64` and /// forward to `serialize_i64`. fn serialize_i8(self, v: i8) -> Result<Self::Ok, Self::Error>; /// Serialize an `i16` value. /// /// If the format does not differentiate between `i16` and `i64`, a /// reasonable implementation would be to cast the value to `i64` and /// forward to `serialize_i64`. fn serialize_i16(self, v: i16) -> Result<Self::Ok, Self::Error>; /// Serialize an `i32` value. /// /// If the format does not differentiate between `i32` and `i64`, a /// reasonable implementation would be to cast the value to `i64` and /// forward to `serialize_i64`. fn serialize_i32(self, v: i32) -> Result<Self::Ok, Self::Error>; /// Serialize an `i64` value. fn serialize_i64(self, v: i64) -> Result<Self::Ok, Self::Error>; /// Serialize a `u8` value. /// /// If the format does not differentiate between `u8` and `u64`, a /// reasonable implementation would be to cast the value to `u64` and /// forward to `serialize_u64`. fn serialize_u8(self, v: u8) -> Result<Self::Ok, Self::Error>; /// Serialize a `u16` value. /// /// If the format does not differentiate between `u16` and `u64`, a /// reasonable implementation would be to cast the value to `u64` and /// forward to `serialize_u64`. fn serialize_u16(self, v: u16) -> Result<Self::Ok, Self::Error>; /// Serialize a `u32` value. /// /// If the format does not differentiate between `u32` and `u64`, a /// reasonable implementation would be to cast the value to `u64` and /// forward to `serialize_u64`. fn serialize_u32(self, v: u32) -> Result<Self::Ok, Self::Error>; /// Serialize a `u64` value. fn serialize_u64(self, v: u64) -> Result<Self::Ok, Self::Error>; /// Serialize an `f32` value. /// /// If the format does not differentiate between `f32` and `f64`, a /// reasonable implementation would be to cast the value to `f64` and /// forward to `serialize_f64`. fn serialize_f32(self, v: f32) -> Result<Self::Ok, Self::Error>; /// Serialize an `f64` value. fn serialize_f64(self, v: f64) -> Result<Self::Ok, Self::Error>; /// Serialize a character. /// /// If the format does not support characters, it is reasonable to serialize /// it as a single element `str` or a `u32`. fn serialize_char(self, v: char) -> Result<Self::Ok, Self::Error>; /// Serialize a `&str`. fn serialize_str(self, value: &str) -> Result<Self::Ok, Self::Error>; /// Serialize a chunk of raw byte data. /// /// Enables serializers to serialize byte slices more compactly or more /// efficiently than other types of slices. If no efficient implementation /// is available, a reasonable implementation would be to forward to /// `serialize_seq`. If forwarded, the implementation looks usually just /// like this: /// /// ```rust,ignore /// let mut seq = self.serialize_seq(Some(value.len()))?; /// for b in value { /// seq.serialize_element(b)?; /// } /// seq.end() /// ``` fn serialize_bytes(self, value: &[u8]) -> Result<Self::Ok, Self::Error>; /// Serialize a `None` value. fn serialize_none(self) -> Result<Self::Ok, Self::Error>; /// Serialize a `Some(T)` value. fn serialize_some<T: ?Sized + Serialize>( self, value: &T, ) -> Result<Self::Ok, Self::Error>; /// Serialize a `()` value. fn serialize_unit(self) -> Result<Self::Ok, Self::Error>; /// Serialize a unit struct like `struct Unit` or `PhantomData<T>`. /// /// A reasonable implementation would be to forward to `serialize_unit`. fn serialize_unit_struct( self, name: &'static str, ) -> Result<Self::Ok, Self::Error>; /// Serialize a unit variant like `E::A` in `enum E { A, B }`. /// /// The `name` is the name of the enum, the `variant_index` is the index of /// this variant within the enum, and the `variant` is the name of the /// variant. /// /// A reasonable implementation would be to forward to `serialize_unit`. /// /// ```rust,ignore /// match *self { /// E::A => serializer.serialize_unit_variant("E", 0, "A"), /// E::B => serializer.serialize_unit_variant("E", 1, "B"), /// } /// ``` fn serialize_unit_variant( self, name: &'static str, variant_index: usize, variant: &'static str, ) -> Result<Self::Ok, Self::Error>; /// Serialize a newtype struct like `struct Millimeters(u8)`. /// /// Serializers are encouraged to treat newtype structs as insignificant /// wrappers around the data they contain. A reasonable implementation would /// be to forward to `value.serialize(self)`. /// /// ```rust,ignore /// serializer.serialize_newtype_struct("Millimeters", &self.0) /// ``` fn serialize_newtype_struct<T: ?Sized + Serialize>( self, name: &'static str, value: &T, ) -> Result<Self::Ok, Self::Error>; /// Serialize a newtype variant like `E::N` in `enum E { N(u8) }`. /// /// The `name` is the name of the enum, the `variant_index` is the index of /// this variant within the enum, and the `variant` is the name of the /// variant. The `value` is the data contained within this newtype variant. /// /// ```rust,ignore /// match *self { /// E::N(ref n) => serializer.serialize_newtype_variant("E", 0, "N", n), /// } /// ``` fn serialize_newtype_variant<T: ?Sized + Serialize>( self, name: &'static str, variant_index: usize, variant: &'static str, value: &T, ) -> Result<Self::Ok, Self::Error>; /// Begin to serialize a dynamically sized sequence. This call must be /// followed by zero or more calls to `serialize_element`, then a call to /// `end`. /// /// The argument is the number of elements in the sequence, which may or may /// not be computable before the sequence is iterated. Some serializers only /// support sequences whose length is known up front. /// /// ```rust,ignore /// let mut seq = serializer.serialize_seq(Some(self.len()))?; /// for element in self { /// seq.serialize_element(element)?; /// } /// seq.end() /// ``` fn serialize_seq( self, len: Option<usize>, ) -> Result<Self::SerializeSeq, Self::Error>; /// Begin to serialize a statically sized sequence whose length will be /// known at deserialization time without looking at the serialized data. /// This call must be followed by zero or more calls to `serialize_element`, /// then a call to `end`. /// /// ```rust,ignore /// let mut seq = serializer.serialize_seq_fixed_size(self.len())?; /// for element in self { /// seq.serialize_element(element)?; /// } /// seq.end() /// ``` fn serialize_seq_fixed_size( self, size: usize, ) -> Result<Self::SerializeSeq, Self::Error>; /// Begin to serialize a tuple. This call must be followed by zero or more /// calls to `serialize_field`, then a call to `end`. /// /// ```rust,ignore /// let mut tup = serializer.serialize_tuple(3)?; /// tup.serialize_field(&self.0)?; /// tup.serialize_field(&self.1)?; /// tup.serialize_field(&self.2)?; /// tup.end() /// ``` fn serialize_tuple( self, len: usize, ) -> Result<Self::SerializeTuple, Self::Error>; /// Begin to serialize a tuple struct like `struct Rgb(u8, u8, u8)`. This /// call must be followed by zero or more calls to `serialize_field`, then a /// call to `end`. /// /// The `name` is the name of the tuple struct and the `len` is the number /// of data fields that will be serialized. /// /// ```rust,ignore /// let mut ts = serializer.serialize_tuple_struct("Rgb", 3)?; /// ts.serialize_field(&self.0)?; /// ts.serialize_field(&self.1)?; /// ts.serialize_field(&self.2)?; /// ts.end() /// ``` fn serialize_tuple_struct( self, name: &'static str, len: usize, ) -> Result<Self::SerializeTupleStruct, Self::Error>; /// Begin to serialize a tuple variant like `E::T` in `enum E { T(u8, u8) /// }`. This call must be followed by zero or more calls to /// `serialize_field`, then a call to `end`. /// /// The `name` is the name of the enum, the `variant_index` is the index of /// this variant within the enum, the `variant` is the name of the variant, /// and the `len` is the number of data fields that will be serialized. /// /// ```rust,ignore /// match *self { /// E::T(ref a, ref b) => { /// let mut tv = serializer.serialize_tuple_variant("E", 0, "T", 2)?; /// tv.serialize_field(a)?; /// tv.serialize_field(b)?; /// tv.end() /// } /// } /// ``` fn serialize_tuple_variant( self, name: &'static str, variant_index: usize, variant: &'static str, len: usize, ) -> Result<Self::SerializeTupleVariant, Self::Error>; /// Begin to serialize a map. This call must be followed by zero or more /// calls to `serialize_key` and `serialize_value`, then a call to `end`. /// /// The argument is the number of elements in the map, which may or may not /// be computable before the map is iterated. Some serializers only support /// maps whose length is known up front. /// /// ```rust,ignore /// let mut map = serializer.serialize_map(Some(self.len()))?; /// for (k, v) in self { /// map.serialize_entry(k, v)?; /// } /// map.end() /// ``` fn serialize_map( self, len: Option<usize>, ) -> Result<Self::SerializeMap, Self::Error>; /// Begin to serialize a struct like `struct Rgb { r: u8, g: u8, b: u8 }`. /// This call must be followed by zero or more calls to `serialize_field`, /// then a call to `end`. /// /// The `name` is the name of the struct and the `len` is the number of /// data fields that will be serialized. /// /// ```rust,ignore /// let mut struc = serializer.serialize_struct("Rgb", 3)?; /// struc.serialize_field("r", &self.r)?; /// struc.serialize_field("g", &self.g)?; /// struc.serialize_field("b", &self.b)?; /// struc.end() /// ``` fn serialize_struct( self, name: &'static str, len: usize, ) -> Result<Self::SerializeStruct, Self::Error>; /// Begin to serialize a struct variant like `E::S` in `enum E { S { r: u8, /// g: u8, b: u8 } }`. This call must be followed by zero or more calls to /// `serialize_field`, then a call to `end`. /// /// The `name` is the name of the enum, the `variant_index` is the index of /// this variant within the enum, the `variant` is the name of the variant, /// and the `len` is the number of data fields that will be serialized. /// /// ```rust,ignore /// match *self { /// E::S { ref r, ref g, ref b } => { /// let mut sv = serializer.serialize_struct_variant("E", 0, "S", 3)?; /// sv.serialize_field("r", r)?; /// sv.serialize_field("g", g)?; /// sv.serialize_field("b", b)?; /// sv.end() /// } /// } /// ``` fn serialize_struct_variant( self, name: &'static str, variant_index: usize, variant: &'static str, len: usize, ) -> Result<Self::SerializeStructVariant, Self::Error>; } /// Returned from `Serializer::serialize_seq` and /// `Serializer::serialize_seq_fixed_size`. /// /// ```rust,ignore /// let mut seq = serializer.serialize_seq(Some(self.len()))?; /// for element in self { /// seq.serialize_element(element)?; /// } /// seq.end() /// ``` pub trait SerializeSeq { /// Must match the `Ok` type of our `Serializer`. type Ok; /// Must match the `Error` type of our `Serializer`. type Error: Error; /// Serialize a sequence element. fn serialize_element<T: ?Sized + Serialize>(&mut self, value: &T) -> Result<(), Self::Error>; /// Finish serializing a sequence. fn end(self) -> Result<Self::Ok, Self::Error>; } /// Returned from `Serializer::serialize_tuple`. /// /// ```rust,ignore /// let mut tup = serializer.serialize_tuple(3)?; /// tup.serialize_field(&self.0)?; /// tup.serialize_field(&self.1)?; /// tup.serialize_field(&self.2)?; /// tup.end() /// ``` pub trait SerializeTuple { /// Must match the `Ok` type of our `Serializer`. type Ok; /// Must match the `Error` type of our `Serializer`. type Error: Error; /// Serialize a tuple element. fn serialize_element<T: ?Sized + Serialize>(&mut self, value: &T) -> Result<(), Self::Error>; /// Finish serializing a tuple. fn end(self) -> Result<Self::Ok, Self::Error>; } /// Returned from `Serializer::serialize_tuple_struct`. /// /// ```rust,ignore /// let mut ts = serializer.serialize_tuple_struct("Rgb", 3)?; /// ts.serialize_field(&self.0)?; /// ts.serialize_field(&self.1)?; /// ts.serialize_field(&self.2)?; /// ts.end() /// ``` pub trait SerializeTupleStruct { /// Must match the `Ok` type of our `Serializer`. type Ok; /// Must match the `Error` type of our `Serializer`. type Error: Error; /// Serialize a tuple struct field. fn serialize_field<T: ?Sized + Serialize>(&mut self, value: &T) -> Result<(), Self::Error>; /// Finish serializing a tuple struct. fn end(self) -> Result<Self::Ok, Self::Error>; } /// Returned from `Serializer::serialize_tuple_variant`. /// /// ```rust,ignore /// match *self { /// E::T(ref a, ref b) => { /// let mut tv = serializer.serialize_tuple_variant("E", 0, "T", 2)?; /// tv.serialize_field(a)?; /// tv.serialize_field(b)?; /// tv.end() /// } /// } /// ``` pub trait SerializeTupleVariant { /// Must match the `Ok` type of our `Serializer`. type Ok; /// Must match the `Error` type of our `Serializer`. type Error: Error; /// Serialize a tuple variant field. fn serialize_field<T: ?Sized + Serialize>(&mut self, value: &T) -> Result<(), Self::Error>; /// Finish serializing a tuple variant. fn end(self) -> Result<Self::Ok, Self::Error>; } /// Returned from `Serializer::serialize_map`. /// /// ```rust,ignore /// let mut map = serializer.serialize_map(Some(self.len()))?; /// for (k, v) in self { /// map.serialize_entry(k, v)?; /// } /// map.end() /// ``` pub trait SerializeMap { /// Must match the `Ok` type of our `Serializer`. type Ok; /// Must match the `Error` type of our `Serializer`. type Error: Error; /// Serialize a map key. fn serialize_key<T: ?Sized + Serialize>(&mut self, key: &T) -> Result<(), Self::Error>; /// Serialize a map value. fn serialize_value<T: ?Sized + Serialize>(&mut self, value: &T) -> Result<(), Self::Error>; /// Serialize a map entry consisting of a key and a value. /// /// Some `Serialize` types are not able to hold a key and value in memory at /// the same time so `SerializeMap` implementations are required to support /// `serialize_key` and `serialize_value` individually. The /// `serialize_entry` method allows serializers to optimize for the case /// where key and value are both available. `Serialize` implementations are /// encouraged to use `serialize_entry` if possible. /// /// The default implementation delegates to `serialize_key` and /// `serialize_value`. This is appropriate for serializers that do not care /// about performance or are not able to optimize `serialize_entry` any /// better than this. fn serialize_entry<K: ?Sized + Serialize, V: ?Sized + Serialize>( &mut self, key: &K, value: &V, ) -> Result<(), Self::Error> { try!(self.serialize_key(key)); self.serialize_value(value) } /// Finish serializing a map. fn end(self) -> Result<Self::Ok, Self::Error>; } /// Returned from `Serializer::serialize_struct`. /// /// ```rust,ignore /// let mut struc = serializer.serialize_struct("Rgb", 3)?; /// struc.serialize_field("r", &self.r)?; /// struc.serialize_field("g", &self.g)?; /// struc.serialize_field("b", &self.b)?; /// struc.end() /// ``` pub trait SerializeStruct { /// Must match the `Ok` type of our `Serializer`. type Ok; /// Must match the `Error` type of our `Serializer`. type Error: Error; /// Serialize a struct field. fn serialize_field<T: ?Sized + Serialize>(&mut self, key: &'static str, value: &T) -> Result<(), Self::Error>; /// Finish serializing a struct. fn end(self) -> Result<Self::Ok, Self::Error>; } /// Returned from `Serializer::serialize_struct_variant`. /// /// ```rust,ignore /// match *self { /// E::S { ref r, ref g, ref b } => { /// let mut sv = serializer.serialize_struct_variant("E", 0, "S", 3)?; /// sv.serialize_field("r", r)?; /// sv.serialize_field("g", g)?; /// sv.serialize_field("b", b)?; /// sv.end() /// } /// } /// ``` pub trait SerializeStructVariant { /// Must match the `Ok` type of our `Serializer`. type Ok; /// Must match the `Error` type of our `Serializer`. type Error: Error; /// Serialize a struct variant field. fn serialize_field<T: ?Sized + Serialize>(&mut self, key: &'static str, value: &T) -> Result<(), Self::Error>; /// Finish serializing a struct variant. fn end(self) -> Result<Self::Ok, Self::Error>; } /// A wrapper type for iterators that implements `Serialize` for iterators whose /// items implement `Serialize`. Don't use multiple times. Create new versions /// of this with the `serde::ser::iterator` function every time you want to /// serialize an iterator. #[cfg(feature = "unstable")] pub struct Iterator<I> where <I as IntoIterator>::Item: Serialize, I: IntoIterator { data: RefCell<Option<I>>, } /// Create a wrapper type that can be passed to any function expecting a /// `Serialize` and will serialize the given iterator as a sequence. #[cfg(feature = "unstable")] pub fn iterator<I>(iter: I) -> Iterator<I> where <I as IntoIterator>::Item: Serialize, I: IntoIterator { Iterator { data: RefCell::new(Some(iter)), } }